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Abstract. Effective integro-differential equations of weakly nonlinear dynamics describing
the interaction of quasi-one-dimensional exchange-dipole spin-waves are derived for a thin
ferromagnetic slab (film). The non-local part of the magnetostatic dispersion of these waves
has been taken into account.Algebraic soliton-like states have been predicted. The conditions
of their existence and their dynamic properties are investigated depending on the film thickness
and on the magnitude and orientation of the external magnetic field. The role of crystallographic
magnetic anisotropy in the formation of these states is analysed.

1. Introduction

In recent years considerable interest has been devoted to the study of features of excitation
and propagation of nonlinear spin waves in magnetic films. These films are convenient
model systems for the study of linear spin-wave processes and modelling of nonlinear
phenomena in dispersive media. One of the main results of this study is the detection of the
envelope solitons under the conditions of pulse excitation and the propagation of dipole and
exchange-dipole spin waves [1–4]. As a rule, a local nonlinear Schrödinger equation (NSE)
is used for the adequate description of weakly nonlinear dynamics [5, 6]. A considerable
body of work has been devoted to the analysis of its solutions under different initial and
boundary conditions, among which are works on numerical computation [7, 8]. Usually
this equation is deduced with the assumption that the system studied has a dispersion law
depending on the amplitude of a spin wave. The approach requires the differentiability of
this law over the entire range of variation of the wavenumberk. However, in the range
of small wavenumbersk(|kd| → 0, d is the thickness of the film) the dispersion law is a
non-differentiable function and, consequently, the approach used is not correct. Therefore,
the applicability of a local NSE is limited to the range of moderate and large values of
wavenumbersk.

The main aim of our paper is to derive the effective equations describing weakly
nonlinear interaction of quasi-one-dimensional spin waves in a thin ferromagnetic slab
in the long-wave limit, when the characteristic size of the magnetic inhomogeneities is
very large compared with the slab thickness. In this interval of the wavenumbers the
non-local character of the relation between the magnetization and magnetic field due to
dipole–dipole interaction cannot be neglected. Effective equations of spin-wave dynamics
have proved to be integro-differential. They are not reducible to the local NSE. Taking into
account the non-local part of the magnetostatic spin-wave dispersion leads to the conclusion
that, in thin ferromagnetic films, there are no purelyexponentialsolitons in the long-wave
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approximation. It has been shown at the same time that, under specific conditions, the
exchange-magnetostatic dispersion and the spin-wave interaction permit the formation of
localized states of thealgebraic soliton type.

To derive the effective nonlinear equations, we use an approximation implying that the
local dipole fields are replaced by the averaged ones over the film thickness. This approach
is suitable for derivation of the effective equations of exchange-dipole mode dynamics. It
can be applied to the case of thin films with free spins at the surface, if the distribution of
the magnetization along the normal to the surface of the film is close to being a uniform
one. Our approximation allows us to extract the branch of the spin waves with the lowest
energy propagating along the slab.

The present paper consists of six sections. In section 2 the approximate method, taking
into account the magnetostatic field, is described. With this method the dispersion law of
linear spin waves is derived. It is well known that the dispersion law of linear spin waves
is determined by the ground state of a spin system. The specific features of the weakly
nonlinear spin excitations are determined by analytical properties of this dispersion law.
Because of this, we should concentrate our attention on the dispersion law in this section.

Using these results, in section 3 the simplified equations of non-local dynamics of small-
amplitude spin excitations are deduced in the case of a ferromagnetic slab. Section 4 is
devoted to the analysis of possible soliton states. In section 5 the role of uni-axial magnetic
anisotropy in the formation ofalgebraic solitons is discussed.

2. Effective de-magnetizing fields and the dispersion law of linear spin waves

Consider an isotropic ferromagnetic film (slab) of thicknessd along thez axis magnetized
by a uniform magnetic fieldH0 directed along the normal to the surface (namely along the
z axis) or tangentially (along they axis). The slab is under magnetic saturation conditions.
The equation of motion of the magnetizationM has the form

∂tM = −|γ |[M × (H0 + H (m) + α1M )] (1)

where ∂t ≡ ∂/∂t; M2 = M2
0, M0 is the saturation magnetization,γ is the magneto-

mechanical ratio,α is the exchange interaction constant and1 is the Laplacian operator.
Below, the modulus sign aroundγ is omitted. The analysis is performed for the case of
free spins at the surface of the slab, that is

∂zM |z=±d/2 = 0 . (2)

The de-magnetizing fieldH (m) satisfies the equations of magnetostatics

rotH (m) = 0 div(H (m) + 4πM ) = 0 (3)

and continuity conditions of tangential components of the magnetic field vectorH (m) and
the normal component of the induction vectorB(m) = H (m) + 4πM at the boundary of a
ferromagnet: (

H (m)
+

)
τ

= (
H (m)

−
)
τ

(
H (m)

+
)
ν
+ 4πMν = (

H (m)
−

)
ν

(4)

where the indices(+) and (−) denote the fields inside and outside the ferromagnetic slab,
respectively, and the indicesτ andν are the tangential and normal components of the vectors
H (m) andM at the surface of a slab. The solution of the magnetostatic equation (3) with
the boundary conditions (4) has the form [9]

H (m) = −∇ϕ ϕ =
∫
ν

dr′Mi(r
′)
∂

∂x ′
i

1

|r − r′| (5)

where the integration is performed over the slab’s volume.
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Consider the application of the relation (5) to the one-dimensional problem. To describe
the quasi-one-dimensional motion of magnetization waves along the slab it is convenient
to introduce the coordinate systemξ0η in the plane of the slab instead of the coordinate
systemx0y:

ξ = x cosζ + y sinζ η = −x sinζ + y cosζ . (6)

In this coordinate system the 0ξ axis coincides with the direction of wave propagation.
Here ζ is the angle of the 0x axis with respect to the 0ζ axis. It is measured counter-
clockwise from the 0x axis. Then the magnetization vector depends only on the two spatial
coordinates:M = M (ξ, z). The variableξ defines the change in the magnetization in
the slab plane. This allows one to perform the convenient Fourier transformation of the
magnetization

M (ξ, z) =
∫

dkM (k, z)exp(ikξ) . (7)

As mentioned above, we are interested in the exchange-dipole modes of the lowest type
for which de-magnetizing fields and explicit formulae for the spin-wave spectrum can be
approximated by a simple method. It is known that, in a slab with free spins at the surface
the distribution of the magnetization along the normal to the surface of the slab is close to a
uniform one [10] provided that the characteristic size of the magnetic inhomogeneity is much
larger than the slab thicknessd (λ � d). By taking into consideration this fact, neglecting
the dependence of the magnetization on thez coordinate and averaging the magnetostatic
fields over the slab thickness

〈H (m)〉 = d−1
∫ +d/2

−d/2
H (m) dz (8)

we find finally( 〈H(m)
x 〉

〈H(m)
y 〉

)
= −4π

(
cosζ
sinζ

)
ŜMξ 〈H(m)

z 〉 = −4πMz(ξ)+ 4π
_

SMz (9a)

where
_

Su =
∫

dξ ′ s(ξ − ξ ′)u(ξ ′) s(ξ) = (2π)−1
∫

dk exp(ikξ)s(k)

s(k) = 1 + |kd|−1[exp(−|kd|)− 1] Mξ = Mx cosζ +My sinζ .
(9b)

An analogous result is obtained if the dipole energy is averaged,

E(m) = −(2d)−1
∫ +d/2

−d/2
H (m)M dξ dz

and the effective magnetostatic fields are defined by the relation〈H (m)〉 = −δE(m)/δM (ξ)

[11]. Let us emphasize that in formula (9) the operator
_

S acts only on the non-uniform part
of the magnetization vector, sinces(k)δ(k) = 0; hence

_

S × constant= 0.
In a thin slab in the long-wave approximation at|kd| � 1 the operator

_

S takes the form
_

Su ≈ −(d/2)∂ξ
_

Hu+ (d2/6)∂2
ξ (10)

where
_

H is the Hilbert operator

_

Hu = (π)−1P
∫ +∞

−∞

dξ ′ u(ξ ′)
ξ ′ − ξ

.

The symbol P denotes the principal-value integral.
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Consider the spin excitation spectrum. Let the slab be under magnetic saturation
conditions. Thereby the uniform magnetic field is directed along the normal to the surface
of the slab, that is, along thez axis. It is further assumed thatH0 � 4πM0, since at
H0 = 4πM0 the state of uniform magnetization is unstable (the sample consists of domains).
Substituting (9) into (1) and linearizing the system of equations obtained with respect to
small deviations of the magnetization, we obtain the following expression for the linear
mode spectrum:

ω2 = (ωH + γαM0k
2)[ωH + γαM0k

2 + s(k)ωM ] (11)

where

ωH = ω0
H − ωM ω0

H = γH0 ωM = γ4πM0 .

Let us note that, in this geometry, the spectrum does not depend on the direction of wave
motion in the slab plane. In the limit|kd| � 1 the dispersion law takes the form

ω2 ∼= ω2
H + ωHωM

|kd|
2

+ ωHk
2

(
2γαM0 − ωMd

2

6

)
. (12)

If the field is directed along they axis then simple calculations result in the following
expression for the spectrum:

ω2 ∼= [ω0
H + ωM − ωMs(k)+ γαM0k

2][ω0
H + ωMs(k) cos2 ζ + γαM0k

2] . (13)

In the long-wave limit(|kd| � 1) relation (13) takes the form

ω2 ∼= ω0
H (ω

0
H + ωM)+ |kd|

2
ωM(ωM cos2 ζ − ω0

H sin2 ζ )

+k2
(
γαM0(2ω

0
H + ωM)− 5

12(ωMd cosζ )2 + 1
6ωMω

0
H (d sinζ )2

)
. (14)

The expressions (11)–(14) coincide with the formulae for the spin-wave spectrum of the
lowest type in a thin slab with free spins at the surface obtained in [12–14]. This suggests
that the approximate method used in the calculation of the dispersion law is applicable
to the linear processes. We propose to use this method for research into the nonlinear
phenomena. According to [13, 14] this branch of the spectrum corresponds to the value
n = 0. The conditionn = 0 implies the absence of nodes of eigenfunctions describing
the non-uniformity of the spin-wave amplitude along the normal to the surface of the slab.
In thin slabs this branch of the spectrum is consistent with the lowest energy in the range
of long wavelengths. It should also be noted that the dispersion relations (12) and (14)
depend on|k| ≡ k. For the film magnetized along the normal to the surface this fact is
specially noted in [12]. As a result the functionsω(k) (see the relations (12) and (14))
become non-differentiable at|k| → 0. The presence of the modulus of the wavevectork
in the dispersion law rather than its projection on the direction of wave motion changes
substantially the effective equation of weakly nonlinear dynamics of these waves, which
becomes non-local and not reducible to the NSE. Non-locality of the dynamics equation
follows from (1) and (9). This result is a consequence of the long-range character of
magnetostatic interactions.

The other critical point in the neighbourhood of which nonlinear excitations are not
described by the local NSE is the point of inflection. Its occurrence is due to the competition
of two types of spatial dispersion, namely exchange and magnetostatic. It is located in the
range of moderate and large values of wavenumberk. Our preliminary analysis shows that
the indicated peculiarity occurs for rather thin films. We plan to publish a detailed analysis
of this situation in a forthcoming article.
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The third peculiar region of the dispersion law is the region of the anomalous dispersion.
It originates from the interaction of the spin modes with different numbersn. The conditions
of the experimental manifestation of this peculiarity were analysed in [2]. At present there
is no adequate theoretical model describing weakly nonlinear phenomena in this interval of
wavenumbersk.

3. Interaction of spin excitations of small amplitude and evolution equations

Let us deduce the effective evolution equations of weakly nonlinear exchange-dipole waves
of the lowest type in ferromagnetic films assuming that these waves propagate along the 0ζ

axis and that|kd| � 1.
Consider first the quasi-one-dimensional dynamics of spin excitations in the slab

magnetized along the normal to the surface. Write down the corresponding Landau–Lifshits
equations for deviations of the magnetization from the ground state to an accuracy of cubic
terms

∂tmx = −[ωH − αγM0∂
2
ξ + ωM sin2(ζ )

_

S]my − 1
2ωM sin(2ζ )

_

Smx

−ωM(2M2
0)

−1
my(m

2
x +m2

y) (15a)

∂tmy = [ωH − αγM0∂
2
ξ + ωM cos2(ζ )

_

S]mx + 1
2ωM sin(2ζ )

_

Smy

+ωM(2M2
0)

−1
mx(m

2
x +m2

y) . (15b)

In (15) in transforming the nonlinear terms we have taken into account thatmz =
−(2M0)

−1(m2
x + m2

y). Thereby the terms involving the derivatives with respect toξ have
been neglected, since they yield corrections of order O(d/λ) and O(d2/λ2) to the constant
of wave interaction. Differentiating the equations of system (15) with respect tot and using
the approximations∂tmx ≈ −ωHmy and∂tmy ≈ ωHmx in transforming the nonlinear terms
we obtain the effective equation defining the fieldϕ = M−1

0 (mx + imy)

∂2
t ϕ + ω2

0ϕ + a∂ξ
_

Hϕ + b∂2
ξ ϕ + g|ϕ|2ϕ = 0 . (16)

Here

ω2
0 = ω2

H a = −ωHωMd/2 b = ωH [(ωMd
2/6)− 2γαM0] g = ωHωM .

(17)

In transforming the dispersion terms in (18) we have used the approximation (10) for the
operator

_

S and the relation
_

H 2 = −1.
When the external magnetic field lies in the plane of the slab (to be specific, along the

y axis), the spin-wave spectrum (14) depends on the direction of wave propagation along
the slab. Moreover, the magnetostatic interactions give rise to the appearance of quadratic
rather than cubic terms in amplitudes of magnetization deviations from the ground state in
Landau–Lifshits equations

(M = M0n + m,n = (0, 1, 0),my ≈ −(2M0)
−1(m2

x +m2
z),H0 � 4πM0) :

∂tmx = (ωM − ωMŜ − γαM0∂
2
ξ + ω0

H )mz − 2πγ sin(2ζ )mzŜmx − ωM

2M2
0

mz(m
2
x +m2

z)

∂tmz = −[ω0
H + ωM cos2(ζ )Ŝ − γαM0∂

2
ξ ]mx + 2πγ sin(2ζ )mxŜmx + ωM

4M0
sin(2ζ )

×Ŝ(m2
x +m2

z) .
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The coefficients of the quadratic terms are proportional to sin(2ζ ) and, consequently,
vanish for the waves propagating along the external magnetic field or perpendicularly to
it. For the directions of wave and spatial scalesλ satisfying the condition(d/λ) sin(2ζ ) �
(mi/M0), i = x, z, the magnetostatic quadratic terms may be neglected. If the corrections
of the order of O(d/λ) and O(ωM/ω0

H ) to the constant of the wave interaction are also
neglected, simple calculations analogous to those presented above result in an equation
which coincides in form with (16), where,ϕ, ω2

0, a, b andg should be now replaced by the
following expressions, respectively:

ϕ = mx + imz
M0

ω2
0 = ω0

H (ω
0
H + ωM) a = d

2
ωM(ω

0
H sin2 ζ − ωM cos2 ζ )

b = 5(ωMd cosζ )2

12
− ωMω

0
H (d sinζ )2

6
− γαM0(2ω

0
H + ωM) g = −ωMω

0
H

2
. (18)

The integro-differential equation (16) cannot be reduced to the local differential equation
of the NSE type as in [5, 6]. Note, however, that, when the parameters characterizing the
wave are changed sufficiently slowly over an interval of the order of the period of fast
oscillations of the magnetization, equation (16) can be written in a form like the NSE. Let
us illustrate this.

To separate the fast oscillation from the slow ones in (16) we can go fromϕ to a new
variable9 (the function9 varies slowly with coordinate and time) according to the formula
ϕ = 9 exp(iω0t). Then

∂2
t ϕ = (∂2

t 9 + 2iω0∂t9 − ω2
09) exp(iω0t) . (19)

It follows from (16) and (19) that, to a good approximation, we can write

∂t9 ≈ − a

2iω0
∂ξ Ĥ9

and, consequently, we have

∂2
t 9 ≈

(
a

2iω0

)2

Ĥ 2∂2
ξ 9 = a2

4ω2
0

∂2
ξ 9 (20)

sinceĤ 2 = −1. Now express the first terms in (19) in terms of spatial derivatives of the
field 9 in accordance with (20). As a result of averaging over fast oscillations in time
equation (16) takes the form

i∂t9 + a1∂ξ Ĥ9 + b1∂
2
ξ 9 + g1|9|29 = 0

a1 = a

2ω0
b1 = 1

2ω0

[
b +

(
a

2ω0

)2]
g1 = g

2ω0
.

(21)

Equation (21) represents correctly the spin-wave spectrum (12). This equation is an analogue
of the non-local NSE. To derive the NSE in [6], the authors have used the expansion of
the nonlinear dispersion relation in powers ofk and |9|2 neark = |9| = 0 and the inverse
Fourier transformation. Since the dispersion law depends on|k|, such an expansion leads
to a term of the form−a1|k|9(k) rather than−a1k9(k) as in [6]. Accordingly, the inverse
Fourier transformation of this term isa1∂ξ Ĥ9 rather than ia1∂ξ9. In view of this remark
the calculations of [6] lead to equation (21). Equation (16) is more general than (21)
because it is not related to one rapidly oscillating harmonic and does not assume the slow
time modulations of the spin-wave amplitude.
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4. Soliton-like excitations in film

Equation (16) (or (21)) is not completely integrable, but it permits exact localized solutions
like solitons. These solutions may be found by using the property of the Hilbert operator.
Let F+(ξ) andF−(ξ) be meromorphic functions of the complex variableξ . Thereby all
the poles of these functions lie in the top(Im ξ > 0) and bottom(Im ξ < 0) half-planes,
respectively, andF+(ξ) → 0, F−(ξ) → 0 at |ξ | → ∞. Then using the Cauchy theorem
about residues it is not difficult to show that the following relations are valid:

ĤF+ = −iF+ ĤF− = iF− . (22)

The relations (22) allow us to seek the solution of equation (16) in the class of meromorphic
functions. In particular, using in (16) the substitution

ϕ = A(t)

ξ − ν(t)
+ B(t)

ξ − ν∗(t)
Im ν > 0 (23)

and setting the coefficients of linear independent functions(ξ − ν∗)−m and(ξ − ν)−m (m =
1, 2, 3) equal to zero we obtain a system of ordinary differential equations for the complex
functionsA,B and ν. At some reductions this system can be proved to be compatible.
Thus, at

ag > 0 bg > 0 (24)

the following solution is possible:

A = −B = |C| exp(i�t + iϕ0) Reν = 0 Imν = 3b

a
≡ 1

�2 = ω2
0 + a2

3b
|C|2 = 2b

g

ϕ = 2i1|C| exp(i�t + iϕ0)

ξ2 +12
.

(25)

It corresponds to a precessing soliton. Hereϕ0 is the real parameter.
The analysis shows that if the film is magnetized perpendicularly to its boundaries, no

soliton regimes seem to be possible. The conditions of soliton existence (24) are more
easily satisfied if the film is magnetized tangentially (see equation (18)). This is possible,
if tan2 ζ < ωM/ω

0
H � 1. In other words, the geometry in which the spin waves propagate

along the boundary of the slab, namely perpendicularly to the magnetic field, is favourable
for the formation of solitons. Since in the tangentially magnetized film the conditiong < 0
holds and the conditionbg > 0 can be fulfilled only in the presence of sufficiently intensive
exchange interactions, there are no purely magnetostatic soliton states in such a film. It is
not difficult to show also that the conditionbg > 0 imposes the following restriction on the
slab thicknessd:

d < a0[HEH0/(2M
2
0)]

1/2
HE = αM0a

−2
0

wherea0 is the lattice constant. If we adopt for yttrium ferriteHE ≈ 104 Oe, M0 ≈ 140 G
and assign 2×103 Oe toH0 [15], then we obtaind < 22.5a0. For these values of parameters
the soliton size1 proves to be larger than the slab thickness(1 � d).

The Lagrange function with the density

Leff = ϑ [|∂tϕ|2 − ω2
0|ϕ|2 − aϕ∗∂ξ Ĥϕ + b|∂ξϕ|2 − (g/2)|ϕ|4] (26)
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can be associated with equation (16). Hereϑ = M0/(2γ ω̃), whereω̃ = ωH and ω̃ = ω0
H

correspond to the orientation of the external magnetic field along the normal to the slab and
along they axis, respectively. The formula (26) allows us to find the soliton energy (27):

E = ϑ

∫ +∞

−∞
dξ [|∂tϕ|2 + ω2

0|ϕ|2 + aϕ∗∂ξ Ĥϕ − b|∂ξϕ|2 + (g/2)|ϕ|4]

= �I + E0 E0 = − 5πM0a
3

27γω0
Hgb

> 0 . (27)

The soliton energy (27) is expressed in terms of the adiabatic invariantI of precessional
motion:

I = ϑ

π

∫ +∞

−∞
dξ

∫ T

0
dt |∂tϕ|2 = 4πM0�a

3γω0
Hg

whereT = (2π/�) is the precession period. Such a form allows one to perform the quasi-
classic quantization of the soliton energy settingI = h̄N , whereN is an integer. It also
allows one to treat the algebraic soliton (25) as a complex consisting ofN non-interacting
particles with energy ¯h�. It is of interest to note that the frequency of soliton precession
� which is defined by the spin-wave interaction proves to be smaller than the frequency of
the uniform resonance of linear modes, that is� < ω0.

Note that, in the case considered, the soliton size1, the frequency of its precession
�, the energyE and the invariantI are unambiguously defined by the external conditions,
namely the slab thickness, the magnitude of the magnetic field and so on. It is not difficult to
show that the form of equation (16) and its solution (25) are not changed, if there is a strong
enough uni-axial anisotropy in the plane of the slab (the anisotropy axis is perpendicular to
the direction of propagation of the spin waves). The corresponding solution of the Landau–
Lifshits equations has been obtained earlier in [16] with the help of asymptotic perturbation
theory and numerical methods.

5. Algebraic soliton-like states in a ferromagnetic film with an ‘easy-plane’ anisotropy

To illustrate the role of crystallographic magnetic anisotropy, we consider the case of a
ferromagnetic slab with ‘easy-plane’ anisotropy. Let the anisotropy axis be perpendicular
to the normal to the plane of the slab and a sufficiently weak magnetic fieldH0 be applied
in this plane:

H0 � M0, (β + 4π)M0 β > 0 . (28)

Hereβ is the anisotropy constant. It is readily seen that the geometry in which the fieldH0

is perpendicular to the direction of spin-wave propagation is favourable for the formation
of soliton states. Assume that the waves propagate along thex axis and the magnetic field
is directed along they axis. Then the magnetic energy density can be written in the form

w = 1
2α(∂xM)

2 + 1
2βM

2
z −H0My − 1

2M · H (m) . (29)

In describing the magnetostatic waves with the scale of inhomogeneity being much
greater than the slab thickness, it is convenient to use the expression (9). Let us
introduce the following parametrization for the magnetization vectorM , namelyM =
M0(cosθ cosψ, cosθ sinψ, sinθ). Then the dynamics equation can be obtained by variation
of the action corresponding to the Lagrange function with the density with respect to the
field θ, ψ :

L = M0

γ
sinθ∂tψ − w .
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Since we are interested in the small-amplitude waves, we write down the dynamic
equation to an accuracy of the terms cubic in the deviationψ̃, θ̃ from the ground state
(ψ = π/2, θ = 0). In the long-wave limit the components with spatial derivatives in
these terms may be neglected. In the presence of crystallographic ‘easy-plane’ anisotropy
the angleθ̃ characterizing the departure of the magnetization vector from the film plane is
small in comparison with the anglẽψ which defines the oscillations ofM in thex–y plane:

θ̃

ψ̃
≈

(
H0

M0(β + 4π)

)1/2

� 1 . (30)

According to the condition (30) the nonlinear terms involvingθ̃ may be ignored. As a result
the system of dynamic equations takes the simple form:

∂t ψ̃

γM0
− (β + 4π + h0 − 4πŜ − α∂2

x )θ̃ = 0

∂θ̃t

γM0
+ (h0 + 4πS̃ − α∂2

x )ψ̃ − h0

6
ψ̃3 = 0 h0 = H0/M0 . (31)

Eliminating θ̃ from the system of equations (31) we obtain the closed effective equation in
terms ofψ̃ :

∂2
t ψ̃ + ω2

0ψ̃ − ρ∂xĤ ψ̃ − µ∂2
x ψ̃ − qψ̃3 = 0

ω2
0 = (γM0)

2h0(β + 4π + h0) ρ = (γM0)
22πd(β + 4π)

q = (γM0)
2

6
h0(β + 4π + h0) µ = (γM0)

2
[
α(β + 4π + 2h0)− 1

3d
22π(β + 10π)

]
.

(32)

In calculating the dispersion terms in (32) we have used the approximation (10). It is
interesting that the interval of parameter variation in (32) permits a solution like (23).
Thereby the difference of solution (23) from (25) is that the soliton obtained is moving:

ψ̃ = 2c10

(x − vt)2 +12
0

c2 = 2ρ2

3qω2
0

10 = ρ

ω2
0

≈ 2πd

h0
� d

v2 = −1

3

(
ρ

ω0

)2

+ µ ≈ (γM0)
2a2

0(β + 4π)

[
HE

M0
− 1

3

(
2πd

a0

)2
M0

H0

]
> 0 . (33)

The last inequality in (33) assumes the obligatory presence of exchange interactions and
imposes a restriction on the slab thickness and the magnitude of the external magnetic field,
namely that the field should not be too small. It is seen that the reduction inH0 leads to a
drop in the soliton’s velocity and to an increase in its width. At

d → dcrit = a0

(
3HEH0

(2π)2M2
0

)1/2

the velocity of soliton motion approaches zero. Let us estimate the velocity (33). Setting the
slab thicknessd = dcrit /3 and taking into consideration the following values of parameters
typical for the yttrium ferriteHE ≈ 104 Oe, M0 ≈ 140 G, β ≈ 30, a0 ≈ 12 Å, γ ≈
1.76 × 107 rad s−1 Oe−1 we obtainv ≈ 130 m s−1 [15, 17]. This value is high since
the velocity depends by definition on the exchange field and the magnitude of the lattice
constanta0 is sufficiently large in the case of yttrium ferrite.

The effective equation (32) can be obtained by variation of the action corresponding to
the Lagrange function with the density

Leff = ϑ1
(
(∂t ψ̃)

2 − ω2
0ψ̃

2 + ρψ̃∂xĤ ψ̃ − µ(∂xψ̃)
2 + 1

2qψ̃
4
)
. (34)
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Hereϑ1 = [2γ 2(β + 4π + h0)]−1. The energy and field momentum of a system have the
following forms, respectively:

E = ϑ1

∫ +∞

−∞
dx

(
(∂t ψ̃)

2 + ω2
0ψ̃ − ρψ̃∂xHψ̃ + µ(∂xψ̃)

2 − 1
2qψ̃

4
)

= Pv + 10πω2
0ρϑ1

9q

(35)

P = 2ϑ1

∫ +∞

−∞
dx ∂t ψ̃∂xψ̃ = 4πϑ1ω

4
0v

3ρq
. (36)

As in the case of solution (25), external conditions define the integrals of motion of the
localized state uniquely. Note that thealgebraic solitons analogous to (33) also occur in
antiferromagnetic films with an ‘easy-plane’ anisotropy [11, 18]. However, in the latter case
they are described by the integrable Benjamin–Ono model.

6. Conclusions

The analysis of dynamics of weakly nonlinear exchange-dipole spin excitations in thin
ferromagnetic films (slabs) shows that, in the long-wave approximation(|kd| � 1), the
effective equations of evolution are integro-differential and are not reduced to the nonlinear
local Schr̈odinger equation. Moreover, these equations are not completely integrable. It
has been shown that in ferromagnetic slabs in the long-wave region there are no purely
magnetostaticexponentialsolitons. At the same time, the system considered permits the
existence of exchange-dipole states of thealgebraic soliton type. The non-local part of
the magnetostatic dispersion ‘smooths’ out the spatial inhomogeneities of the magnetization
distribution. The role of the external magnetic field is thereby proved to be extremely
important. Namely, the considered localized states occur only in tangentially magnetized
slabs, provided that the direction of the wave propagation is perpendicular to the direction
of magnetic field. What is more, the formation of the precessing algebraic soliton has made
possible the energy resonance absorption at a frequency smaller than the frequency of the
uniform resonance of linear modes (uniform ferromagnetic resonance). The experimental
detection of this phenomenon might be conclusive evidence for the occurrence of this
soliton-like state. A good argument in support of this effect might also be the experimental
observation of the field dependence of the frequency of the new resonance. It should be
noted that the crystallographic magnetic anisotropy is also responsible for nonlinearity. For
example, if in the case of a ferromagnet with ‘easy-plane’ anisotropy such an anisotropy
is taken into account, thealgebraic soliton acquires non-zero velocity. However, in these
systems the conditions for the existence of solitons are more stringent. In particular, essential
restrictions on the slab thickness are imposed.

Acknowledgment

This work was supported in part by the Russian Science Foundation under grant 93-02-2011.

References

[1] Kalinikos B A, Kovshikov N G and Slavin A N 1990Phys. Rev.B 42 8658
[2] Kalinikos B A, Kovshikov N G and Slavin A N 1988Sov. Phys.–JETP94 159
[3] Chen M, Tsankov M A, Nash J M and Patton C E 1993Phys. Rev. Lett.67 1707



Non-local dynamics of the spin excitations in thin films 10229

[4] Wiese G, Kabos P and Patton C E 1993J. Appl. Phys.74 1218
[5] Lukomski V P 1978Sov. Phys.–Ukrainian Phys. J.23 134 (in Russian)
[6] Zvezdin A K and Popkov A F 1983Sov. Phys.–JETP84 606
[7] Slavin A N and Dudko G M 1990J. Magn. Magn. Mater.86 115
[8] Chen M, Nash M and Patton C E 1993J. Appl. Phys.73 3906
[9] Akhiezer A I, Bar’yakhtar V G and Peletminski S V 1967 Spinovye Volay (Spin Waves)(Moscow: Nauka)

p 368
[10] Raevskii V Ya 1986PhD ThesisInstitute of Metal Physics, Sverdlovsk (in Russian)
[11] Kiselev V V and Tankeyev A P 1994Sov. Phys.–Solid State36 3055
[12] De Wames R E and Wolfram T J 1970J. Appl. Phys.41 987
[13] Kalinikos B A 1981Sov. Phys. J.8 42
[14] Kalinikos B A and Slavin A N 1986J. Phys. C: Solid State Phys.19 7013
[15] Wiese G, Buxman L, Kabos P and Patton C E 1994J. Appl. Phys.75 1041
[16] Kovalev A C, Kosevich A M, Mangos I V and Maslov K V 1986 JETP Lett.44 174
[17] Gurevich A and Melkov G 1994Magnetic Oscillation and Waves(Moscow: Nauka) p 464
[18] Kiselev V V and Tankeyev A P 1995J. Phys: Condens. Matter7 2087


